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INTRODUCTION 
 The raster scanning and nanoindentation capabilities of the AFM 
are exploited in force spectroscopy, a valuable quantitative technique 
for mapping the elastic properties of materials down to nanometer 
resolution.  When the probe is of well-defined geometry and the 
indentation behavior can be represented by established contact 
mechanics models, the force maps can be transformed to elastic 
modulus maps to facilitate comparison.  This is especially important in 
biological specimens, where sample-to-sample variability is usually 
high. 
 At relatively small strains, gels and other materials that exhibit 
rubber elasticity can be assumed to be linear elastic and the indentation 
mechanics modeled using the generalized Hertzian force-indentation 
(F vs. δ) relationship [1-2]: 

 F = λδβ (1) 

where λ and the constant β are dependent on the geometry of the 
indenter.  The elastic properties of the sample (Young’s modulus E 
and Poisson’s ratio ν) are contained in λ.  For the large compressive 
deformation of a rubber sphere by rigid flat plates, Tatara has derived 
contact mechanics relationships based on the Mooney-Rivlin law [3].  
These relationships appear to be pertinent, with some modification, to 
the case of a rigid sphere deforming an elastic half space. 
 Even when direct F-δ relationships exist, careful treatment of 
AFM data must be practiced due to the need to infer values of force 
and indentation from measurements of the position (z) and deflection 
(d) of the cantilever [1].  The complication is compounded when 
applying the Tatara model because it requires a numerical solution to 
the governing equations.  Moreover, the indirect measurement of F 
and δ introduces an additional variable in the form of the contact point 

coordinates (z0, d0).  We applied an approximate nonlinear model 
based on the assumption that the dependence of the contact radius on 
indentation depth remains unchanged at large strains.  This single 
equation model was used to extract Young’s moduli from the large 
strain indentation of tissue-engineered and native cartilage specimens. 
 
MATERIALS AND METHODS 
 Engineered cartilage constructs were grown from chicken embryo 
sternal chondrocytes seeded in poly(vinyl alcohol) hydrogel scaffolds 
[4].  The cartilaginous tissue was separated from the scaffold after 
culture periods of five and 25 days, and fixed with formaldehyde.  
Mouse cartilage samples were harvested from the femoral heads of a 
one-day old homozygous mutant.  Longitudinal sections of 60 µm 
thickness were used for all measurements. 
 AFM probing was performed in contact mode using a commercial 
instrument (Bioscope I with Nanoscope IV controller, Veeco 
Metrology, Santa Barbara, CA).  General purpose silicon nitride 
probes (Veeco) with 10 µm diameter polystyrene beads attached to the 
tips were used. 
 The cantilever deflection-position datasets corresponding to the 
extension stroke of each indentation were fit with a modified Hertz 
equation based on the rubber elasticity stress-strain relationship 

 σ = C(Λ - Λ2) (2) 

where σ is the normal stress, C is an elastic constant equal to the shear 
modulus in rubber elasticity theory, and Λ is the extension ratio 
(related to the normal strain ε by 1-ε).  The indentation stress and 
strain were defined as F/(πRδ) and (δ/R)1/2, respectively, where a = 
(Rδ)1/2 is the Hertz contact radius and R is the radius of the sphere.  
For ideal Hertzian behavior, σ/ε is a constant and proportional to 
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Young’s modulus E0.  Combining Eq. (2) and the indentation stress 
and strain definitions, the following force-indentation relationship is 
obtained: 
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Here, λH corresponds to the value of λ in Eq. (1) for a spherical 
(Hertz) indenter and is equal to 4E0R1/2/3(1-ν 2), where E0 is Young’s 
modulus of the sample at zero strain and ν  i s  Poisson’s ratio. 
 
RESULTS AND DISCUSSION 
 When the AFM dataset is free of high levels of noise, especially 
in the vicinity of the contact point, it can be truncated to eliminate 
points that exceed a predetermined, linear strain threshold.  This is 
illustrated in the example shown in Fig. 1, where Young’s modulus 
evaluated using Eq. (1) with a strain threshold of approximately 15% 
agrees well with the result using Eq. (3).  If Eq. (1) is used to fit the 
entire dataset, the resulting fit is poor as indicated by the large mean-
square-error (MSE; see plot of errors in inset of Fig. 1).  The extracted 
modulus is also high in comparison to those from the other fits. 
 If the level of noise in the data is high or the linear regime 
comprises a small number of data points, the Hertzian small strain 
analysis using Eq. (1) becomes unreliable.  This is demonstrated in 
Fig. 2, where a representative dataset from the indentation of mouse 
cartilage is shown.  The value of Young’s modulus thus obtained is 
significantly less than the values obtained from the large strain 
analyses.  It is obvious that the small subset of the dataset 
corresponding to small strain is greatly influenced by noise.  The neo-
Hookean equation again provides a superior fit when compared to Eq. 
(1) and appears to correctly identify the contact point. 
 Use of the AFM in measuring the elastic properties of biological 
materials such as cartilage has become a common and accepted 
technique.  Due to the lack of an accessible and easily implemented 
nonlinear contact model, classical Hertzian mechanics as represented 
by Eq. (1) are used even in cases where nonlinear behavior is apparent.  
Equation (3) is a direct force-indentation relationship that we have 
found to be superior to the Hertzian models for cases of large 
indentation strains.  We successfully applied this approximate model 
to extract Young’s moduli of synthetic poly(vinyl alcohol) gels known 
to exhibit rubber elastic behavior (data not shown).  Here, we have 
shown that the neo-Hookean model can also be applied to the large 
strain indentation of biological gels such as cartilage. 
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Figure 1.  Extension data for engineered cartilage probed 
using a 10 µm diameter sphere.  Every seventh data point 
is plotted.  Fits using the Hertz and neo-Hookean equations 
are compared. Contact points are indicated by the filled 
circles. The force is equal to k(d – d0), where k is the spring 
constant of the cantilever, and indentation is (z – d) – (z0 – 
d0).  Inset shows plots of errors.  
 
 

 
Figure 2.  Extension data for mouse cartilage probes using 
a 10 µm diameter sphere.  Every fifth data point is plotted. 


